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Facult́e des Sciences Dhar Mahraz, BP 1796, Fes, Morocco

Received 29 July 1997, in final form 3 February 1998

Abstract. High-temperature series expansion of the spin correlation functions on the B-spinel
lattice are computed to order 6 inβ = 1/kBT for Heisenberg model having both nearest-
and next-nearest-neighbour exchange integrals. The results are given for various neighbour
correlations (up to the third). The behaviour with the temperature and the site dilution is
presented. The obtained results provide a useful tool for a straightforward interpretation and
understanding of experimental data. The approach is applied to the experimental results of the
B-spinel ZnCr2xAl 2−2xS4 in the dilution range 0.85 6 x 6 1. The critical temperature and
the critical exponents for the susceptibility and the correlation length are deduced by applying
the Pad́e approximant methods. The following estimates are obtained for the familiar critical
exponents:ν = 0.691± 0.011 andγ = 1.382± 0.012. These values are not sensitive to the
dilution ratio x. The transition temperatures as a function ofx obtained by the present theory
are found to be in excellent agreement with the experimental ones.

1. Introduction

Some previous works, using series expansion methods for the spinel lattice, have restricted
themselves to nearest-neighbour coupling and non-random lattice [1] or to the restricted
order inβ [2]. Nevertheless, there exists a considerable need for more terms in order to
study several unresolved problems.

In this work, it is intended to extend the development of the high-temperature series
expansion (HTS) of the spin correlation functions to the order 6 inβ with nearest-neighbour
(n.n.) and next-nearest-neighbour (n.n.n.) interactions,J1 andJ2 respectively, for the diluted
B-spinel lattice AB2xB′2−2xX4. In this latter the magnetic B and the diamagnetic B′ ions
are located in the tetrahedral sites of the cubic spinel lattice. The A ions are divalent metal
ions. The X ions can be anions of the chalcogenide group.

To deduce the spin correlation function:γij = 〈Si ·Sj 〉/S(S + 1) between spins at site
i and j , we have used the diagrammatic representation performed by Stanley and Kaplan
(SK) [3, 4]. Their method is general and can be applied to any lattice. This semiclassical
treatment is a simplification of the more complex procedure of Rushbrooke and Wood [5]
used for the calculation of the susceptibility in the quantum-mechanical case. In order to
obtain more information about the magnetic properties in the B-spinel system, we have
calculated the spin correlation functions between first, second and third n.n. spinsγ1, γ2
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and γ3 respectively. To study the critical region of the particular case of the B-spinel
lattice ZnCr2xAl 2−2xS4 in the long-range ordering 0.856 x 6 1 [6], we have applied the
Pad́e approximant (PA) methods to the HTS of the spin correlation function, the magnetic
susceptibilityχ(k) and the correlation lengthξ(T ). The critical temperatureTN , the critical
exponentsγ for the magnetic susceptibility andν for the correlation length are deduced.
In the whole range of concentration 0.856 x 6 1, the exponentsγ andν are found to be
equal to 1.382± 0.012 and 0.691± 0.011 respectively.

It is known that the measurement of the neutron scattering is a powerful tool for the
investigation of the spin correlation. Neutron scattering experiments in ZnCr2xAl 2−2xS4 with
0.856 x 6 1 were carried out with the 800-cell multidetector diffractometer installed at the
Siloë reactor of the CEN Grenoble and on the D1A diffractometer of the Laue–Langevin
institute. More details on the experimental conditions are given elsewhere in [7]. The
magnetic diffuse peaks are studied by the Ornstein–Zernike form with a Lorentzian line.
The experimental thermal variations of the correlation length are obtained forx = 1, 0.90
and 0.85. A qualitative analysis of this variation shows that the critical exponentν must
be the same for the three concentrations. Experimental values ofTN/J1 deduced from
the neutron diffraction measurements are in good agreement with those obtained by HTS
extrapolated with the PA methods.

2. Theory and results

Starting with the zero-field Heisenberg Hamiltonian

H = −2
∑
i,j

JijSi · Sj (1)

where the summation run over all pairs of n.n. and n.n.n. interactionsJ1 andJ2 respectively.
The expansion of the spin correlation function in powers ofβ is obtained as follows [3]

〈Si · Sj 〉 = TrSi · Sj e−βH

Tr e−βH
=
∑
l=0

(−1)l

l!
αlβ

l (2)

with

αl = νl −
l−1∑
k=0

Clkαkµl−k νm = 〈Si · SjHm〉β=0 (3)

andµm = 〈Hm〉β=0.
This leads to a diagrammatic representation given in [4]. The calculation of the

coefficients of theγi according to the diagrammatic method involves two separate phases.

(a) The finding and cataloguing of all the diagrams or graphs which can be constructed
from one dashed line connecting the sites 0 and i andl straight lines, and the determination
of diagrams whose contribution is nonvanishing.

(b) Counting the number of times that a diagram can occur in the spinel lattice. Step (a)
has already been accomplished in the SK work. Step (b), however, is very tedious. In our
case, we have to deal with the two Heisenberg constant couplings:J1 andJ2 between first
and second n.n. in the spinel system: AB2X4 (with only BB interactions).

For each topological form of a given diagram, a full line can either representJ1 or
J2. We must, thus, derive from each topological form a class of diagrams; each of them
represents a term of the series as:Jm1 J

n
2 (m, n = 0, 1, . . . , l andm + n = l) for the lth

order. This is especially the limiting factor in how far one can carry the expansion.



Spin correlation functions in B-spinel 3613

Figure 1. The first-n.n. spin correlation functionγ1 plotted against the temperature for the
system ZnCr2xAl 2−2xS4 for x = 1, 0.9 and 0.85.

In this fashion, we calculated all of the coefficients required for the calculation of the
spin correlation functionsγi (i = 1–3) in the case of a diluted B-spinel lattice AB2xB′2−2xX4

through orderl = 6, and the results of this calculation are given in appendix A. In theγi
with i > 4 the series contain, only, terms inβl with l > 4.

Equation (2) combined with the expressions of appendix A and the results of appendix B
permits the computation of the spin correlation functionsγi (i = 1–3) in terms of powers
of β, x and mixed powers ofJ1 andJ2.

For a given set of theJi of a diluted B-spinel system AB2xB′2−2xX4 with S = 3
2

(in which we shall be interested here) we can derive the spin correlation function and
its dependence upon disorder (variation with temperatureT and magnetic site dilutionx).
We have adopted a rigid model for the constant couplings, where the latter are not very
sensitive to the temperature and the magnetic disorder variation. We will especially consider
the helimagnetic spinel ZnCr2xAl 2−2xS4 in the long-range order (LRO) region 0.856 x 6 1.
The values ofJ1 andJ2 used are 2.2 K and 1.1 K respectively. They are obtained on the
basis of neutron and magnetic results combined with the mean-field theory [8].

Figures 1–3 show the evolution of the first-, second- and third-n.n. spin correlation
functions with temperature forx = 1, 0.9 and 0.85 in diluted ZnCr2S4 system (e.g.
ZnCr2xAl 2−2xS4). The main feature of these curves is the decrease withT and x, i.e.
the order is destroyed by the thermal disorder and the magnetic dilution. For the pure
compound and for all temperatures, theγ1 is positive, theγ2 is negative and theγ3 is
positive. This sequence+ − + is a characteristic of a non-linear ordering. From figure 3
we see thatγ3 is negative at very low temperature and for diluted samples. When the
disorder is augmented it becomes positive.
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Figure 2. The second-n.n. spin correlation functionγ2 versus temperature for ZnCr2xAl 2−2xS4

for the same concentrations.

Since we are interested in estimating critical points we have used the PA methods to
study the dependence of the critical temperatureTN on the relative strength ofJ1, J2 and
the ratio of dilutionx. The TN is estimated as the temperature at which theγ1 diverges
[7]. Using [3, 4] PA we have calculated the ratioTN/J1 in the LRO region of the system
ZnCr2xAl 2−2xS4. Figure 4 shows the obtainedTN/J1 (solid line) against dilutionx. In
this figure we have included, for comparison, the experimental results obtained by neutron
diffraction given in [6]. One can see the excellent agreement between the theoretical and
experimental results.

The wavelength-dependent susceptibilityχ(k) and correlation functionS(k) are defined
as

χ(k) = gµ2
Bβ
∑
i,j

〈Si · Sj 〉 e−ik·Rij (4)

and

S(k) =
∑
i,j

〈Si · Sj 〉 e−ik·Rij (5)

whereµB is the Bohr magneton,g the gyromagnetic ratio andRij is the separation between
the spinsi andj .

In order to obtain a qualitative measure of the correlation lengthξ(T ) for a given
temperatureT , we expand the correlation functionS(k) in a Taylor expansion about the
magnetic reciprocal latticeQ of the given system [11]:

S(k) = S(Q)[1− ξ2(T )(k −Q)2+ 0(k −Q)4]. (6)
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Figure 3. The same as figure 2 for the third-n.n. spin correlation functionγ3.

Recasting this in the Ornstein–Zernike from, the following asymptotic form is obtained:

S(k) = S(Q) · κ2(T )

[κ2(T )+ (k −Q)2]
(7)

whereκ(T ) = ξ−1(T ).
In the B-spinel lattice and for the particular case of the helimagnetic structure with

wave-vectorQ = [0, 0, k], we obtain

S(k) = 4

[
1+ γaa + γab cos

(
πk

2

)
+ γac cos(πk)

]
. (8)

γaa = 2γ1 + 4γ3 is the in-plane correlation.γab = 4γ1 + 8γ2 is the correlation between
neighbouring planes.γac = 4γ2 + 8γ3 is the correlation between the second-neighbour
planes.

AboveTN , short-range order is present and gives rise to diffuse scattering contribution
strongly peaked at theQ-value associated with the helical order [6, 7]. The maximization
of S(k) with respect tok = k0 gives

cos

(
πk0

2

)
= −1

4

γab

γac
. (9)

k0 is related to the helix angleθ by θ = πk0/2
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Figure 4. Variation of theTN/J1 with the magnetic concentrationx in ZnCr2xAl 2−2xS4 for
0.85 6 x 6 1. The circles are the experimental points reported in [6]. The line is the result
obtained from the high-temperature series expansion extrapolated with the Padé approximant
methods.

Expanding the cosines of equation (8) in the Taylor expansion aboutk = k0 and using
the equation (6) we obtain(

ξ

a

)2

= 1

8S(k0)

[
−γac + γ 2

ab

16γac

]
(10)

wherea is the lattice parameter.
The simplest assumption that one can make concerning the nature of the singularity of

the magnetic susceptibilityχ(k) and the correlation lengthξ(T ) is that in the neighbourhood
of the critical points the above two functions exhibit an asymptotic behaviour.

χ(k) ∝ (TN − T )−γ (11)

and

ξ2(T ) ∝ (TN − T )−2ν . (12)

TN represents the critical temperature, deduced by the PA methods,γ and ν the critical
exponents.

Representation of the series expansions ofχ(k) and ξ2(T ) by [3, 4] AP would enable
us to findγ and 2ν. By finding limy→yN (y − yN)(d/dy) log(F (y)) (F (y) = χ, ξ2) with
y = J1/T andyN = J1/TN we have obtained the values of the above two critical exponents
in the case of the B-spinel ZnCr2xAl 2−2xS4.

Using the helix angleθ deduced from the position of the magnetic satellite of the neutron
diffraction pattern [8],θ(x = 1) = 71◦, θ(x = 0.90) = 68◦ and θ(x = 0.85) = 64◦, we
have obtained the central values ofγ andν for the three concentrationsγ = 1.382± 0.012
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Figure 5. The critical neutron scattering observed in ZnCr2xAl 2−2xS4 for x = 0.9 and at
T = 15 K. The solid line represents the fit to the Lorentzian form of (8) (see text). The circles
are the experimental points.

andν = 0.691± 0.011. These values may be compared with those of the 3D Heisenberg
model, namely, 1.3866± 0.0012 and 0.7054± 0.0011 [9, 10]. The agreement is excellent.

In order to study the thermal variation ofξ(T ), we have analysed the magnetic diffuse
intensity by the Lorentzian form of (7). Figure 5 shows an example of this fit in the case
of the compoundx = 0.9 and atT = 15 K. For all studied temperatures and dilutions the
fits are excellents. The thermal variations ofξ(T ) for x = 1, 0.9 and 0.85 are presented
in figure 6. The results show a unexpected feature: the onset of long-range order atTN is
not associated with a maximum inξ(T ). Indeedξ(T ) increases on further cooling. There
is possibly a break in the slope of the curve ofξ(T ) against temperature atTN . A similar
behaviour is observed in the system KMncZn1−cF3 near the percolation threshold [12]. An
explanation based on the cluster topology of spins in the backbone of the infinite cluster is
proposed [12].

The curvatures ofξ(T ) aroundTN of each dilution are identical, hence the value of the
critical exponentν is almost the same for the three concentrations.

3. Conclusion

The first three spin correlation functions for the diluted B-spinel lattice AB2xB′2−2xX4 were
determined with the nearest- and next-nearest-neighbour interactions to order 6 inβ by
the high-temperature series expansion. We applied the results to the particular experimental
B-spinel ZnCr2xAl 2−2xS4 in the long-range order region 0.856 x 6 1. The spin correlations
persist up to about 100 K. The sequence sign of theγ1, γ2 andγ3 for T > TN is compatible
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Figure 6. Correlation length versus temperature in ZnCr2xAl 2−2xS4 for x = 1, 0.9 and 0.85 as
derived from scans such as that shown in figure 5. The arrows indicate the critical temperature
TN . Lines are guides for the eye.

with a non-linear order. The short-range ordering forT aboveTN is characterized by a
helical spin arrangement similar to that observed in the ordered state forT below TN .

High-temperature series expansion extrapolated with Padé approximants is shown to be
a convenient method to provide valid estimations of critical temperatures for real magnetic
systems [13]. By applying this method to theγ1 we are estimated the critical temperatures
against the dilutionx in the long-range order region of ZnCr2xAl 2−2xS4. The obtained
results are in good agreement with those obtained by experimental neutron diffraction. The
critical exponents of the magnetic susceptibilityγ and the correlation lengthν are found
equals to 1.382±0.012 and 0.691±0.011 in the whole range of concentration 0.856 x 6 1.
These values are compatible with those of 3D Heisenberg model. A qualitative study of
the experimental thermal variation of the correlation length shows the independence of the
critical exponentν with the dilution.

According to the Harris criterion [14], since ZnCr2S4 is a good 3D Heisenberg system,
the critical exponentα of the specific heat is less than zero [9]; hence, the critical exponents
are unaffected by dilution.

Similar studies for the short-range order region of ZnCr2xAl 2−2xS4 (x < 0.85) are under
consideration.

Appendix A

The topological diagram type as in SK notation (τ ) and the correspondingαl which are
needed to extend the high-temperature series to orderl = 6 in the case of a B-spinel lattice
with n.n. and n.n.n. interactions.
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(1)

(τ1 : ) [α1] = 1
3

α1 = [α1]x2(−2S(S + 1))n(i)Ji

(2)(
τ2 :

)
[α2] = 2

9

α2 = [α2]x3(−2S(S + 1))2
∑
p,q

n(p,q)JpJq

(3)(
τ 1

3 :

)
[α3]1 = − 2

15

(
τ 2

3 :

)
[α3]2 = 2

9

α3 = (−2S(S + 1))3
{

[α3]1x
2n(i)J 3

i + [α3]2x
4
∑
p,q,r

n(p,q,r)JpJqJr

}
(4)(

τ 1
4 :

)
[α4]1 = − 8

45

(
τ 2

4 :

)
[α4]2 = − 8

15(
τ 3

4 :

)
[α4]3 = 8

27

α4 = (−2S(S + 1))4
{
x3
∑
p,q

n(p,q)([α4]1J
3
p Jq + [α4]2J

2
i JpJq)

+x5
∑
p,q,r,s

n(p,q,r,s)[α4]3JpJqJrJs

}
(5)(

τ 1
5 :

)
[α5]1 = 40

81

(
τ 2

5 :

)
[α5]2 = − 8

9(
τ 3

5 :

)
[α5]3 = − 8

27(
τ 4

5 :

)
[α5]4 = − 8

27

(
τ 5

5 :

)
[α5]5 = 16

63(
τ 6

5 :

)
[α5]6 = − 16

9

(
τ 7

5 :

)
[α5]7 = − 8

9(
τ 8

5 :

)
[α5]8 = − 152

135

α5 = (−2S(S + 1))5
{
x2[α5]5n

iJ 5
i + x3

∑
p,q

[α5]8n
(p,q)JiJ

2
p J

2
q (A1)

+x4

(∑
p,q,r

(
[α5]2n

(p,q,r)J 2
i JpJqJr + [α5]3n

(p,q,r)J 3
p JqJr

+[α5]4n
(p,q,r)JpJ

3
q Jr

)
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+
∑
p,q,r,s

[α5]6n
(p,q,r,s)JiJpJqJrJs +

∑
p,q,r,s

[α5]7n
(p,q,r,s)JpJqJrJ

2
s

)
+x6[α5]1

∑
p,q,r,s,h

n(p,q,r,s,h)JpJqJrJsJh

}
(6)(

τ 1
6 :

)
[α6]1 = 80

81

(
τ 2

6 :

)
[α6]2 = − 16

27(
τ 3

6 :

)
[α6]3 = − 16

27

(
τ 4

6 :

)
[α6]4 = − 16

9

(
τ 5

6 :

)
[α6]5 = − 32

9

(
τ 6

6 :

)
[α6]6 = − 304

135

(
τ 7

6 :

)
[α6]7 = 16

45

(
τ 8

6 :

)
[α6]8 = 32

63(
τ 9

6 :

)
[α6]9 = − 16

9

(
τ 10

6 :

)
[α6]10 = − 32

9(
τ 11

6 :

)
[α6]11 = − 16

9

(
τ 12

6 :

)
[α6]12 = − 16

9(
τ 13

6 :

)
[α6]13 = − 32

9

(
τ 14

6 :

)
[α6]14 = − 608

135(
τ 15

6 :

)
[α6]15 = − 304

135

(
τ 16

6 :

)
[α6]16 = 16

15(
τ 17

6 :

)
[α6]17 = 160

63

α6 = (−S(S + 1))6
{
x3

(∑
p,q

n(p,q)([α6]7J
3
p J

3
q + [α6]8J

5
p Jq + [α6]16J

2
i J

3
p Jq

+[α6]17J
4
i JpJq)

)
+x4

( ∑
p,q,r,s

[α6]6n
(p,q,r,s)J 2

p J
2
q JrJs

+
∑
p,q,r,s

n(p,q,r,s)([α6]14JiJ
2
p JqJrJs + [α6]15J

2
p J

2
q JrJs)

)
+x5

( ∑
p,q,r,s

n(p,q,r,s)([α6]2J
3
p JqJrJs + [α6]3JpJ

3
q JrJs + [α6]9J

2
i JpJqJrJs)

+
∑

p,q,r,s,h

[α6]4JpJqJrJsJ
2
h +

∑
p,q,r,s,h,m

[α6]5n
(p,q,r,s,h,m)JpJqJrJsJhJm

+
∑

p,q,r,s,h,m

n(p,q,r,s,h,m)[α6]13JpJqJrJsJhJm
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+
∑

p,q,r,s,h

[α6]10n
(p,q,r,s,h)JiJpJqJrJsJh + [α6]11n

(p,q,r,s,h)J 2
p JqJrJsJh

+
∑

p,q,r,s,h

[α6]12n
(p,q,r,s,h)JpJ

2
q JrJsJh

)
+x7

∑
p,q,r,s,h,m

n(p,q,r,s,h,m)[α6]1JpJqJrJsJhJm

}
.

Our main task is to compute then(p,q,...). The results are given in appendix B for each
ith neighbour.

Appendix B

As then(p,q,...) are coefficients ofJpJq . . ., and the latter product is invariant under a change
in the order ofp, q, . . ., we can sum up then(p,q,...) over all combinations of the (p, q, . . .).
We note(p, q, . . .) =∑C(p,q,...) n

(p,q,...).
For instance, we note(122) = n(1,2,2.)+ n(2,1,2.)+ n(2,2,1) and so on. The (p, q, . . .) are

listed in table B1 with their numbers of occurrences in the spinel lattice for each neighbour
up to orderl = 6, and which are necessary for the computation of theγi . The dashed lines
in the diagrams can either represent a simple straight line as in diagramτ2 in formulas (A1)
or a double straight line as in diagramτ 1

4 or τ 2
4 . This is because the number of occurrences

of a diagram in the lattice does not depend on the type of the link between sites but only on
the number of sites in the diagram. From these diagrams, only those in expressions (A1)
are used.

Table B1.

Order l Diagram type First n.n. Second n.n. Third n.n.

1 (1)
(2)

1
0

0
1

0
0

2 (11)
(12)
(22)

2
4
2

1
2
2

1
4
0

3 (111)
(112)
(122)
(222)

2
24
34
18

4
16
27
5

12
40
44
16

4
(1111)
(1112)
(1122)
(1222)
(2222)

0
78

260
286

95

10
85

217
202
60

8
54

173
140
64

5

(11111)
(11112)
(11122)
(11222)
(12222)
(22222)

2
164

1010
1776
1262

267

18
289

1002
1331
699
147

16
262
976

1125
294
95

5
(1111)
(1112)
(1122)
(1222)
(2222)

2
16
20
16

2

0
4
4
4
0

0
2
4
6
0
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Table B1. (Continued)

5

(11111)
(11112)
(11122)
(11222)
(12222)
(22222)

2
12
10

8
4
2

2
6
4
2
3
0

2
4
2
8
2
0

6

(111111)
(111112)
(111122)
(111222)
(112222)
(122222)
(222222)

22
507

4031
9554

13 413
6634
1253

52
865

4464
9321
9669
3262

681

58
1164
2654
7324
8485
2684
542

6

(111111)
(111112)
(111122)
(111222)
(112222)
(122222)
(222222)

0
24
84

120
84
24

0

0
0
6

12
6
0
0

0
6
8
4
2
2
0

6

(11111)
(11112)
(11122)
(11222)
(12222)
(22222)

0
40

132
168
102

24

0
14
46
50
22
3

0
6

22
34
18
2

6

(111111)
(111112)
(111122)
(111222)
(112222)
(122222)
(222222)

0
20
56
64
44

8
0

2
14
32
34
14
0
0

4
16
24
28
6
2
4

6

(111111)
(111112)
(111122)
(111222)
(112222)
(122222)
(222222)

0
36
58
72
80
32

4

2
16
33
33
22
17
2

0
22
21
25
17
31
4

6

(111111)
(111112)
(111122)
(111222)
(112222)
(122222)
(222222)

2
32
76
84
74
48
14

8
38
66
65
44
19
3

4
22
56
51
32
14
2
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