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Abstract. High-temperature series expansion of the spin correlation functions on the B-spinel
lattice are computed to order 6 i = 1/kgT for Heisenberg model having both nearest-
and next-nearest-neighbour exchange integrals. The results are given for various neighbour
correlations (up to the third). The behaviour with the temperature and the site dilution is
presented. The obtained results provide a useful tool for a straightforward interpretation and
understanding of experimental data. The approach is applied to the experimental results of the
B-spinel ZnCp,Al>_2.Ss in the dilution range B5 < x < 1. The critical temperature and

the critical exponents for the susceptibility and the correlation length are deduced by applying
the Paé& approximant methods. The following estimates are obtained for the familiar critical
exponents:v = 0.691+ 0.011 andy = 1.382+ 0.012. These values are not sensitive to the
dilution ratio x. The transition temperatures as a functionxobbtained by the present theory

are found to be in excellent agreement with the experimental ones.

1. Introduction

Some previous works, using series expansion methods for the spinel lattice, have restricted
themselves to nearest-neighbour coupling and non-random lattice [1] or to the restricted
order in 8 [2]. Nevertheless, there exists a considerable need for more terms in order to

study several unresolved problems.

In this work, it is intended to extend the development of the high-temperature series
expansion (HTS) of the spin correlation functions to the order 6 with nearest-neighbour
(n.n.) and next-nearest-neighbour (n.n.n.) interactidnandJ, respectively, for the diluted
B-spinel lattice AB,B’,_, X4. In this latter the magnetic B and the diamagneticidhs
are located in the tetrahedral sites of the cubic spinel lattice. The A ions are divalent metal
ions. The X ions can be anions of the chalcogenide group.

To deduce the spin correlation functiop; = (S; - S;)/S(S + 1) between spins at site
i and j, we have used the diagrammatic representation performed by Stanley and Kaplan
(SK) [3,4]. Their method is general and can be applied to any lattice. This semiclassical
treatment is a simplification of the more complex procedure of Rushbrooke and Wood [5]
used for the calculation of the susceptibility in the quantum-mechanical case. In order to
obtain more information about the magnetic properties in the B-spinel system, we have
calculated the spin correlation functions between first, second and third n.n.)gpips
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and ys3 respectively. To study the critical region of the particular case of the B-spinel
lattice ZnCp,Al,_».S4 in the long-range ordering.8 < x < 1 [6], we have applied the
Pade approximant (PA) methods to the HTS of the spin correlation function, the magnetic
susceptibilityx (k) and the correlation length(7). The critical temperatur&y, the critical
exponentsy for the magnetic susceptibility and for the correlation length are deduced.
In the whole range of concentration88 < x < 1, the exponenty andv are found to be
equal to 1382+ 0.012 and 691+ 0.011 respectively.

It is known that the measurement of the neutron scattering is a powerful tool for the
investigation of the spin correlation. Neutron scattering experiments inZAGr », S, with
0.85 < x < 1 were carried out with the 800-cell multidetector diffractometer installed at the
Siloé reactor of the CEN Grenoble and on the D1A diffractometer of the Laue—Langevin
institute. More details on the experimental conditions are given elsewhere in [7]. The
magnetic diffuse peaks are studied by the Ornstein—Zernike form with a Lorentzian line.
The experimental thermal variations of the correlation length are obtained $od, 0.90
and 0.85. A qualitative analysis of this variation shows that the critical exponemist
be the same for the three concentrations. Experimental valudg of; deduced from
the neutron diffraction measurements are in good agreement with those obtained by HTS
extrapolated with the PA methods.

2. Theory and results

Starting with the zero-field Heisenberg Hamiltonian
H=-2%"1;5-8 @
ij
where the summation run over all pairs of n.n. and n.n.n. interactipaad J, respectively.
The expansion of the spin correlation function in powerga$é obtained as follows [3]

TrS; - S; e -,
(Si-§)) = T TrefH = 2 T o B (2
with
-1
o) =V — Z C/lcakﬂlfk Vi = (S, . Sme>/3:0 (3)
k=0

andu,, = (H™)g=o.
This leads to a diagrammatic representation given in [4]. The calculation of the
coefficients of they; according to the diagrammatic method involves two separate phases.

(a) The finding and cataloguing of all the diagrams or graphs which can be constructed
from one dashed line connecting the sites 0 and ilastdaight lines, and the determination
of diagrams whose contribution is nonvanishing.

(b) Counting the number of times that a diagram can occur in the spinel lattice. Step (a)
has already been accomplished in the SK work. Step (b), however, is very tedious. In our
case, we have to deal with the two Heisenberg constant couplihgand J, between first
and second n.n. in the spinel system: A8 (with only BB interactions).

For each topological form of a given diagram, a full line can either represemtr
Jo. We must, thus, derive from each topological form a class of diagrams; each of them
represents a term of the series a§J; (m,n =0,1,...,1 andm + n = [) for the Ith
order. This is especially the limiting factor in how far one can carry the expansion.
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Figure 1. The first-n.n. spin correlation functiop plotted against the temperature for the
system ZnGx Alp_2, Sy for x = 1, 0.9 and 0.85.

In this fashion, we calculated all of the coefficients required for the calculation of the
spin correlation functiong; (i = 1-3) in the case of a diluted B-spinel lattice AB,_, X4
through orderl = 6, and the results of this calculation are given in appendix A. Inythe
with i > 4 the series contain, only, terms @ with [ > 4.

Equation (2) combined with the expressions of appendix A and the results of appendix B
permits the computation of the spin correlation functigpgi = 1-3) in terms of powers
of B8, x and mixed powers of; and J,.

For a given set of the/; of a diluted B-spinel system ABB, , X4 with § = %
(in which we shall be interested here) we can derive the spin correlation function and
its dependence upon disorder (variation with temperaluend magnetic site dilutior).

We have adopted a rigid model for the constant couplings, where the latter are not very
sensitive to the temperature and the magnetic disorder variation. We will especially consider
the helimagnetic spinel ZngyAl,_»,S4 in the long-range order (LRO) region85 < x < 1.

The values of/; and J> used are 2.2 K and 1.1 K respectively. They are obtained on the
basis of neutron and magnetic results combined with the mean-field theory [8].

Figures 1-3 show the evolution of the first-, second- and third-n.n. spin correlation
functions with temperature fox = 1, 0.9 and 0.85 in diluted Zng$%, system (e.g.
ZnCrAl, »,.S;). The main feature of these curves is the decrease Withnd x, i.e.
the order is destroyed by the thermal disorder and the magnetic dilution. For the pure
compound and for all temperatures, theis positive, they, is negative and thes; is
positive. This sequencé — + is a characteristic of a non-linear ordering. From figure 3
we see thaty; is negative at very low temperature and for diluted samples. When the
disorder is augmented it becomes positive.
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Figure 2. The second-n.n. spin correlation functigs versus temperature for ZngAl o2, Sy
for the same concentrations.

Since we are interested in estimating critical points we have used the PA methods to
study the dependence of the critical temperatliyeon the relative strength of;, J> and
the ratio of dilutionx. The Ty is estimated as the temperature at which theliverges
[7]. Using [3,4] PA we have calculated the raff /J; in the LRO region of the system
ZnCrAl, 5. S,. Figure 4 shows the obtainetly/J; (solid line) against dilutiorn. In
this figure we have included, for comparison, the experimental results obtained by neutron
diffraction given in [6]. One can see the excellent agreement between the theoretical and
experimental results.

The wavelength-dependent susceptibijityk) and correlation functioi§ (k) are defined
as

x(k) =guiB Yy (S;- S;) et @
ij

and

S(ky =Y (S;-S;)e* )

ij
whereu g is the Bohr magnetorg the gyromagnetic ratio an®;; is the separation between
the spinsi and ;.
In order to obtain a qualitative measure of the correlation lerggth) for a given

temperaturel’, we expand the correlation functiofik) in a Taylor expansion about the
magnetic reciprocal lattic€ of the given system [11]:

S(k) = S(Q[L - &4T)(k — Q)* + 0k — Q)] (6)
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Figure 3. The same as figure 2 for the third-n.n. spin correlation funcgign

Recasting this in the Ornstein—Zernike from, the following asymptotic form is obtained:
8@ KA
- 2 2 (7)
[3(T) + (k — Q)?]
wherex(T) = £~Y(T).
In the B-spinel lattice and for the particular case of the helimagnetic structure with
wave-vector@ = [0, 0, k], we obtain

S(k)

wk

Sk)y=4 [1 + Yaa + Yab COS< > ) + Vac coswk)} : 8

Yaa = 2y1 + 4ys is the in-plane correlationy,, = 4y1 + 8y, is the correlation between
neighbouring planes.y,. = 4y, + 8y is the correlation between the second-neighbour
planes.

Above Ty, short-range order is present and gives rise to diffuse scattering contribution
strongly peaked at th@-value associated with the helical order [6,7]. The maximization
of S(k) with respect tak = kg gives

cos(n—ko> = —}@. 9)
4 Yac

ko is related to the helix angle by 6 = 7ko/2
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Figure 4. Variation of theTy/J1 with the magnetic concentratian in ZnCr,Al>_»,S4 for

0.85 < x < 1. The circles are the experimental points reported in [6]. The line is the result
obtained from the high-temperature series expansion extrapolated with tBeapprbximant
methods.

Expanding the cosines of equation (8) in the Taylor expansion dbeut, and using
the equation (6) we obtain

E 2__ 1 %i
(5> = BS(ko) [_V‘“‘ * 16yaj (10)

wherea is the lattice parameter.

The simplest assumption that one can make concerning the nature of the singularity of
the magnetic susceptibility (k) and the correlation leng#(7) is that in the neighbourhood
of the critical points the above two functions exhibit an asymptotic behaviour.

x(k) o< (Ty —T)™ (11)
and

EXT) o (Ty — T) 72" (12)
Ty represents the critical temperature, deduced by the PA methodsd v the critical
exponents.

Representation of the series expansiong (%) and£%(T) by [3,4] AP would enable
us to findy and 2. By finding lim,_,,, (y — yn)(d/dy) l0g(F(y)) (F(y) = X, £2) with
y = J1/T andyy = J1/ Ty we have obtained the values of the above two critical exponents
in the case of the B-spinel ZngAl, 5, S;.

Using the helix anglé deduced from the position of the magnetic satellite of the neutron
diffraction pattern [8],6(x = 1) = 71°, 6(x = 0.90) = 68 and6f(x = 0.85) = 64°, we
have obtained the central valuesjyofandv for the three concentrations = 1.382+ 0.012
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Figure 5. The critical neutron scattering observed in Zp@d,_»,Ss for x = 0.9 and at
T = 15 K. The solid line represents the fit to the Lorentzian form of (8) (see text). The circles
are the experimental points.

andv = 0.691+ 0.011. These values may be compared with those of the 3D Heisenberg
model, namely, B866+ 0.0012 and 07054+ 0.0011 [9, 10]. The agreement is excellent.

In order to study the thermal variation &{7"), we have analysed the magnetic diffuse
intensity by the Lorentzian form of (7). Figure 5 shows an example of this fit in the case
of the compoundc = 0.9 and at7 = 15 K. For all studied temperatures and dilutions the
fits are excellents. The thermal variations&f) for x = 1, 0.9 and 0.85 are presented
in figure 6. The results show a unexpected feature: the onset of long-range offtersat
not associated with a maximum &(7). Indeed&(T') increases on further cooling. There
is possibly a break in the slope of the curve&df”) against temperature dly. A similar
behaviour is observed in the system KMn,_.F3; near the percolation threshold [12]. An
explanation based on the cluster topology of spins in the backbone of the infinite cluster is
proposed [12].

The curvatures of (T) aroundTy of each dilution are identical, hence the value of the
critical exponent is almost the same for the three concentrations.

3. Conclusion

The first three spin correlation functions for the diluted B-spinel lattice B8B_, X4 were
determined with the nearest- and next-nearest-neighbour interactions to ordes 6yin

the high-temperature series expansion. We applied the results to the particular experimental
B-spinel ZnCg,Al,_», S, in the long-range order region&b < x < 1. The spin correlations
persist up to about 100 K. The sequence sign ofithe, andy; for T > Ty is compatible
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Figure 6. Correlation length versus temperature in Za@d,_»,S4 for x =1, 0.9 and 0.85 as
derived from scans such as that shown in figure 5. The arrows indicate the critical temperature
Ty. Lines are guides for the eye.

with a non-linear order. The short-range ordering forabove Ty is characterized by a
helical spin arrangement similar to that observed in the ordered stafe lhetow Ty .

High-temperature series expansion extrapolated witle R@groximants is shown to be
a convenient method to provide valid estimations of critical temperatures for real magnetic
systems [13]. By applying this method to the we are estimated the critical temperatures
against the dilutionc in the long-range order region of ZnLAl, ».S,. The obtained
results are in good agreement with those obtained by experimental neutron diffraction. The
critical exponents of the magnetic susceptibilityand the correlation length are found
equals to 13824+0.012 and 0691+0.011 in the whole range of concentratio9 < x < 1.
These values are compatible with those of 3D Heisenberg model. A qualitative study of
the experimental thermal variation of the correlation length shows the independence of the
critical exponentv with the dilution.

According to the Harris criterion [14], since Zn(S; is a good 3D Heisenberg system,
the critical exponend of the specific heat is less than zero [9]; hence, the critical exponents
are unaffected by dilution.

Similar studies for the short-range order region of Zn8F, »,S; (x < 0.85) are under
consideration.

Appendix A

The topological diagram type as in SK notatior) @nd the corresponding; which are
needed to extend the high-temperature series to érged in the case of a B-spinel lattice
with n.n. and n.n.n. interactions.
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Our main task is to compute the”%). The results are given in appendix B for each
ith neighbour.

Appendix B

As thenr4--) are coefficients off, J, ..., and the latter product is invariant under a change
in the order ofp, ¢, ..., we can sum up the¢-+) gver all combinations of they( ¢, ...).
We note(p, g, ...) = Y ¢(pq., 000
For instance, we not€l22) = n*22) 4 n212) 1 4,221 and so on. Thex, q,...) are
listed in table B1 with their numbers of occurrences in the spinel lattice for each neighbour
up to orderl = 6, and which are necessary for the computation ofytheThe dashed lines
in the diagrams can either represent a simple straight line as in diagremfiormulas (A1)
or a double straight line as in diagram or 2. This is because the number of occurrences
of a diagram in the lattice does not depend on the type of the link between sites but only on
the number of sites in the diagram. From these diagrams, only those in expressions (Al)
are used.

Table B1.

Order! Diagram type  Firstn.n.  Second n.n.  Third n.n.

1 @ 1 0 0
rovoveust 2) 0 1 0
> 11 2 1 1
12 4 2 4

A (22) 2 2 0
3 111 2 4 12
112 24 16 40

122 34 27 44

(222 18 5 16

(1111 0 10 8

4 (1112 78 85 54
(1122 260 217 173

Q (1222 286 202 140
(2222 95 60 64

(11111 2 18 16

5 (11112 164 289 262
(11122 1010 1002 976

O (11222 1776 1331 1125
(12222 1262 699 294

(22222 267 147 95

(1111 2 0 0

5 (1112 16 4 2
(1122 20 4 4

,,-"’ (1222 16 4 6
(2222 2 0 0
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Table B1. (Continued)

(11119 2 2 2
5 (11112 12 6 4

- (11122 10 4 2
u (11222 8 2 8
(12222 4 3 2

(22222 2 0 0

(111113 22 52 58

(111113 507 865 1164

(111122 4031 4464 2654
(111223 9554 9321 7324
(112222 13413 9669 8485
(122223 6634 3262 2684
(222222 1253 681 542

(O-

(111112 0 0 0
6 (111112 24 0 6
(111122 84 6 8
(111222 120 12 4
(112222 84 6 2
(122222 24 0 2
(222222 0 0 0
(11113 0 0 0
(11112 40 14 6
6 (11122 132 46 22
Q0 @22 168 50 34
(12222 102 22 18
(22222 24 3 2
(111112 0 2 4
(111112 20 14 16
6 (111122 56 32 24
(111222 64 34 28
< (112222 44 14 6
(122222 8 0 2
(222222 0 0 4
(111112 0 2 0
(111112 36 16 22
5 (111122 58 33 21
(111222 72 33 25
<10 12222 80 22 17
(122222 32 17 31
(222222 4 2 4
(111112 2 8 4
(111112 32 38 22
6 (111122 76 66 56
(111222 84 65 51
A0 12223 74 44 32
(122222 48 19 14
(222222 14 3 2
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